White matter hyperintensities and normal-appearing white matter integrity in the aging brain

نویسندگان

  • Susana Muñoz Maniega
  • Maria C. Valdés Hernández
  • Jonathan D. Clayden
  • Natalie A. Royle
  • Catherine Murray
  • Zoe Morris
  • Benjamin S. Aribisala
  • Alan J. Gow
  • John M. Starr
  • Mark E. Bastin
  • Ian J. Deary
  • Joanna M. Wardlaw
چکیده

White matter hyperintensities (WMH) of presumed vascular origin are a common finding in brain magnetic resonance imaging of older individuals and contribute to cognitive and functional decline. It is unknown how WMH form, although white matter degeneration is characterized pathologically by demyelination, axonal loss, and rarefaction, often attributed to ischemia. Changes within normal-appearing white matter (NAWM) in subjects with WMH have also been reported but have not yet been fully characterized. Here, we describe the in vivo imaging signatures of both NAWM and WMH in a large group of community-dwelling older people of similar age using biomarkers derived from magnetic resonance imaging that collectively reflect white matter integrity, myelination, and brain water content. Fractional anisotropy (FA) and magnetization transfer ratio (MTR) were significantly lower, whereas mean diffusivity (MD) and longitudinal relaxation time (T1) were significantly higher, in WMH than NAWM (p < 0.0001), with MD providing the largest difference between NAWM and WMH. Receiver operating characteristic analysis on each biomarker showed that MD differentiated best between NAWM and WMH, identifying 94.6% of the lesions using a threshold of 0.747 × 10(-9) m(2)s(-1) (area under curve, 0.982; 95% CI, 0.975-0.989). Furthermore, the level of deterioration of NAWM was strongly associated with the severity of WMH, with MD and T1 increasing and FA and MTR decreasing in NAWM with increasing WMH score, a relationship that was sustained regardless of distance from the WMH. These multimodal imaging data indicate that WMH have reduced structural integrity compared with surrounding NAWM, and MD provides the best discriminator between the 2 tissue classes even within the mild range of WMH severity, whereas FA, MTR, and T1 only start reflecting significant changes in tissue microstructure as WMH become more severe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Age-related changes in normal-appearing brain tissue and white matter hyperintensities: more of the same or something else?

BACKGROUND AND PURPOSE Cerebral white matter (WM) hyperintensities are a frequent finding in elderly people, and lowering of cerebral magnetization transfer ratio (MTR) has been observed. The aim of this study was to assess the relationship between age-related WM hyperintensities and MTR changes in the brain. METHODS We performed MR imaging in a group of young subjects, a group of elderly ind...

متن کامل

White matter atrophy and lesion formation explain the loss of structural integrity of white matter in aging

The importance of macrostructural white matter changes, including white matter lesions and atrophy, in intact brain functioning is increasingly being recognized. Diffusion tensor imaging (DTI) enables measurement of the microstructural integrity of white matter. Loss of white matter integrity in aging has been reported, but whether this is inherent to the aging process itself or results from sp...

متن کامل

Loss of venous integrity in cerebral small vessel disease: a 7-T MRI study in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL).

BACKGROUND AND PURPOSE Previous pathological studies in humans or in animal models have shown alterations of small arteries and veins within white matter lesions in cerebral small vessel disease. We aimed to evaluate in vivo, the integrity of the cerebral venous network using high-resolution MRI both within and outside white matter hyperintensities in cerebral autosomal-dominant arteriopathy wi...

متن کامل

The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery

Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...

متن کامل

White matter integrity in small vessel disease is related to cognition

Cerebral small vessel disease, including white matter hyperintensities (WMH) and lacunes of presumed vascular origin, is common in elderly people and is related to cognitive impairment and dementia. One possible mechanism could be the disruption of white matter tracts (both within WMH and normal-appearing white matter) that connect distributed brain regions involved in cognitive functions. Here...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015